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Abstract-In a recent paper [6] ageneral theory of surface stress was presented. Here we discuss several simple
solutions within this theory.

I. INTRODUCTION

Certain crystals, when cleaved, exhibit a surface stress which gives rise to small but detectable
strains in the interior of the crystal (see [1]). More generally, microscopic considerations predict
the presence of surface stress whenever a new surface is created (see [2-5]). The small strain
magnitudes attributable to surface stress together with the sensitivity of this stress to the
environment render experimental difficulties. Further, the absence of a general continuum
theory of surface stress has resulted in problems concerning the analysis and interpretation of
experimental data.

In a recent paper[6] a general mathematical theory of surface stress was presented; within
the linearized version of this theory the surface stress tensor is the sum of a residual stress
tensor and a linear function of surface strain [2, 3]. This clearly generalizes the concept of a
surface tension, accommodating situations in which the surface is anisotropic and/or supports
compressive stress as predicted for certain crystals on the basis of atomistic calculations [2].

The presence of surface stress results in a non-classical boundary condition which gives the
surface traction on the substrate in terms of surface stress and inertia. This boundary condition
and the surface stress-strain relation together with the equations of classical elasticity (to be
satisfied within the body) form a coupled system of field equations. It is the purpose of this
paper to exhibit some simple solutions of these equations and to discuss their physical
significance. In this respect it is to be remarked that the theory outlined above also models
situations in which the surface of a body is coated with a thin layer of another material.
Currently much attention has been devoted to such films since they have applications as surface
wave-guides (see [7,8]). The theory may also approximate the behavior of bodies whose
surfaces have been "shot-peened"; that is, bombarded with small pellets, so forming, on the
surface, a thin skin in which the stress is compressive (see [9]).

In Section 2 are presented the basic equations for bodies and their surfaces assuming
isotropy and homogeneity. The magnitudes of the physical parameters involved are tabulated
for an iron free surface and a very thin iron film upon a glass substrate. Severai solutions within
the equilibrium theory appear in Section 3. These model situations in which a part of the body
is removed, thereby exposing a free surface. Although the body may be initially free of stress,
the residual stress located in the newly-created surface generates a stress field in the body. The
results quoted are those for an infinite circular cylinder[6], a sphere [lO], and an infinite body of
square cross section. The last problem was first considered by Herring [3], who established some
order-of-magnitude estimates; here the outcome of a study by Dunham and Gurtin[ll] is
discussed.

The possibility of compressive surface stress led Orowan[5] to conjecture that "a strong
negative surface tension may conceivably give rise to buckling, a wrinkling of the outermost
atomic planes..." The last problem we discuss in Section 3 addresses itself to Orowan's
conjecture. We there present results of Andreussi and Gurtin[12] which show that surface
buckling is possible whenever either the residual surface stress is compressive or the surface
stress-strain modulus is negative.

Section 4 is concerned with dynamical problems; in particular, vibrations of a thin beam and
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acoustic wave propagation in a half-space. The beam problem, motivated by experiments of
Lagowski, Gatos and Sproles[l3], was studied by Gurtin, Markenscoff and Thurston[l4] who
showed that a constant surface tension has no effect on the natural frequency, thus contradic­
ting the assertions of [13]. Both bulk and surface plane harmonic waves in a half-space are
discussed, details being drawn from work on the reflection of bulk waves at a plane surface by
Gurtin and Murdoch[15] and on the propagation of Rayleigh and Love waves by Murdoch[l6].

Further considerations are briefly discussed in Section 5, namely the thermodynamical
counterpart (see Murdoch [10)) of the mechanical theory employed in this paper, the extension of
the work reviewed to interfaces between pairs of solids (see [10, 17]), and a desirable extension
of the theory so as to include couple-stresses. Appended is a section in which we explain our
notation concerning the differential geometry of surfaces.

2. MECHANICAL THEORY: BASIC EQUATIONS

We consider a body fjJ whose physical properties in the neighborhood of its surface are
sensibly different from those of its interior. This surface region is modelled as a material
surface [I; that is, the boundary of fjJ is regarded as a two-dimensional continuous body in its
own right, endowed with a structure which reflects the behavior of the surface region. In
particular, the stress localized in the surface region is represented by the surface stress tensor
I. This tensor field has the following interpretation: if y is a smooth curve in [I with unit
normal I' (at any point of y the vector I' lies in the tangent plane to [I and is orthogonal to y)
then II' is the force (per unit length of y) exerted by that portion of [I into which I' is directed
upon its remaining part. We assume that [I adheres to fjJ without slipping and that both fjJ and
[/are homogeneous, linearly elastic, and isotropic. Then the basic equations consist of the classical
equations (e.g. [18))

divT = po
T = A(trE)l +2#£E in fjJ

E = 1/2(Vu +Vu T
)

coupled with the surface equations (Ref. [6])

div9'I = Tn +poD
I = 001 + 2(#£0 - oo)IE + (Ao+ oo)(trE)1 + ooV9'u

E= 1/2(Du +DoT)

on [I.

(I)

(2)

Here T, u and E denote, respectively, the stress, displacement and strain fields on fjJ; the
constants p, A and #£ are the mass density and the Lame moduli for fjJ; .I and E denote the
surface stress and surface strain fields on [/; the constants Po, 00, Ao and #£0 are the surface mass
density, the residual surface tension and the surface Lame moduli; D is the outward unit normal
to [/. The remaining notation is explained in the Appendix. In writing eqns (1) and (2) we have
tacitly assumed that the environment exerts no force on any part of the body.

Some sample values for the moduli are given in the table below for two cases of physical
interest. The first column (iron free surface) gives the surface moduli for a freshly cleaved
surface: the values of Ao and #£0 are computed using the results of Price and Hirth[l9] together
with the (somewhat dUbious) assumption of isotropy; the density Po is computed from the bulk
value for iron assuming a thickness of loA for the surface[l9]. The second column gives the
moduli for a 103 Airon film deposited upon a glass substrate: the density and surface moduli are
computed using the bulk values, while the residual surface stress 00 comes from data of
Klokholm and Berry [20].

3. EQUILIBRIUM PROBLEMS

Here we examine time-independent solutions to eqns (I) and (2) in a number of cases. We
show that, for situations in which the physical parameters hav~ the orders of magnitude listed
in Table 1, static experiments for the determination of the surface Lame moduli Ao and #£0 will
be difficult to devise, since their effect is extremely small.



Surface stress in solids

Table I.

103 ~ iron film
moduli iron free surface on glass

substrate

a (N/m) 1.7 110

~o
.. 2.5 8 x 10

3

A
O

.. -8 7 x 10
3

Po (kg/m
2

) 7 x 10- 6 7 x 10-4

~ (N/m
2

) 7 x 1010 2.25 x 1010

A .. 8 x 1010 2.25 x 1010

P (kg/m3) 7 x 103 3 x 103

43)

3.1 Infinite cylinder, cylindrical hole, and sphere
Let !I be an infinite circular cylinder of radius a. Then for the corresponding plane

problem[6] the stress is a uniform pressure of magnitude

oia(1 + ~),

where

~ = (Ao+2ILo)/2a(A + IL),

and the radius decreases by

oi2(A + 1L)(1 + ~).

For the two cases listed in Table 1, ~a = 10-11 m and 2.6 x 10-7 m, respectively, so that ~ is
negligible compared to unity for any realizable value of a. Setting ~ = 0 we see that the radius
decreases by the amount

oi2(A + IL),

yielding 0.06 Aand 12 A for the two cases of interest. Note that this quantity is independent of
the radius. For ~ = 0 the pressure is ula; even for a as small as 10-s m this pressure is only
1.7 x lOS N/m2 (25 psi) and 1.1 x 107 N/m2 (1600 psi).

The companion problem in which !I is the exterior to a cylinder has an equally simple
solution[6] with the same qualitative features. It is of interest to note that the cylinder
decreases in radius by an amount less than that of the corresponding cylindrical hole.

If !J is a sphere of radius a, then the stress[lO] is a uniform pressure of magnitude

2ula(1 +a),

where

a = 2[u+2(Ao+ lLo)]/a(3A +21L).

The radius decreases by the amount

2oi(3A + 21£)(1 + tI).

As in the case of the previous examples, substitution of data from Table 1 reveals that the role
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played by '\0 and Ito is negligible in the case of the iron free surface, while for an iron film on a
glass substrate the radius must be of order 10-5 m to influence the calculated value of a by 1%.

3.2 Square crystal
Here the problem is plain, the cross section being square. This problem was first posed by

Herring[3] with (2)1 replaced by the constitutive equation

I=ul.

Since I represents the Piola-Kirchhoff stress, rather than the Cauchy stress, this is an
approximative constitutive equation for the case in which the surface stress is a pure surface
tension.

As Herring first noted, for this constitutive equation the loading of the surface on the
substrate is equivalent to four concentrated loads, one at each corner of the square, with each
load applied diagonally outward (for u < 0) and of magnitude y'(2)lul. Using a finite element
analysis, this problem was solved by Dunham and Gurtin [It] for the following choice of constants:

u = -I N/m, {3 = 5 X1010 N/m2
, v = 1/3, 1= 10-5 m

(fJ = Young's modulus, v = Poisson's ratio and I = width). The results are shown in Fig. I. The
maximum displacement occurs at the corner and is about I A(this displacement is independent
of the choice of I). Although the stress becomes unbounded as the corner is approached, the
maximum principal stress at a distance greater than 1/20 from the corners is less than
20 x 105 N/m2 (290 psi).

---------

displacement

1.1 A

Fig. I.

3.3 Surface buckling of a half-space
Here we consider the plane problem appropriate to a half-space, but now we use the

constitutive eqn (2h without any approximative assumption. We seek a solution which yields a
buckled shape for the free surface, and which decays rapidly with depth. The equations in the
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interior of the body are easily satisfied with the aid of an Airy stress function (e.g. Gurtin[l8));
one with the requisite properties is

cp(x, y) = (A + By) e-"'Y sin CdX,

where the coordinate system is rectangular with x-axis coincident with the free surface and
y-axis pointing into the body. The "boundary condition" (2h leads to an eigenvalue problem for
the determination of Cd and the constants A and B. This problem has a solution with Cd > 0
provided either

0' < 0 or Ao+ 2p.o < O.

We therefore have the following result of Andreussi and Gurtin[12]: sur/ace buckling is
possible whenever either the residual sur/ace stress is compressive or the sur/ace elastic modulus
is negative.

4. DYNAMICAL PROBLEMS

This section is concerned with the effect of surface stress upon free vibrations of a beam
and also upon (plane harmonic) acoustic wave propagation in a half-space.

4~1 Free vibrations 01 a beam
Gurtin, Markenscoff and Thurston[l4] have studied the free vibrations of a cantilever within

the framework of classical beam theory, but with surface stress included through the boundary
condition (2)1_3. In particular, they derive the following relation for the lowest natural frequency
I:

f 2= f2 . [I + 6(Ao+ 2p.o)]
classIcal fJh'

Here Iclassical is the natural frequency neglecting surface stress, h is the thickness of the beam
(assumed rectangular in cross section), and fJ is Young's modulus. Thus, in contrast to the
remarks of Lagowski, Gatos and Sproles[13], the residual surface tension 0' has no effect on
the natural frequency. Surface elasticity, however, does: if Ao+2p.o is negative, as is the case
with an iron free surface (see Table I), then the effect of surface stress will be to lower the
natural frequency, a result in qualitative agreement with the experimental findings of [13] for
GaAs wafers 3-50 p.m in thickness, 6-15 mm in length, and 1-1.5 mm in width. However, using
the values fJ = 1011 N/m2 and h = 10-5 m, the former a reasonable choice for GaAs, together
wi~ Ao+ 2p.o = -3 N1m, the value for iron which we take as an estimate, we conclude that the
correction term is of order 10-5 and consequently negligible. Thus, unless the surface moduli of
GaAs are 4 or 5 orders of magnitude larger than those of iron, the effect of the free surface
(within the experimental range of [13)) is negligible.

On the other hand, for a glass beam of thickness 10-5 m whose free surfaces are coated with
a loJ Airon film the data in Table I yield a correction factor of 0.25. This therefore furnishes a
possible method of determining the surface moduli of thin films.

4.2 Acoustic wave propagation in half-spaces
Let ~ be a body which occupies the half-space {x: Xl ~ O}, where (x .. X2, Xl) denote

Cartesian coordinates. Then eqns (1) may be expressed in the form[l8]

for X3~0, (3)

where i, j, k range over the integers 1, 2 and 3, summation convention is used, 8jj designates the
Kronecker delta, and a subscript preceded by a comma indicates differentiation with respect to
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the corresponding coordinate. Equations (2) become, in this co-ordinate system (see Appendix),

I ia•a + T;3 = Po";
I all =u8all +(lLo - u)(ua./J + ull... ) + (Ao+U )u'Y.~all +uUa .1l on X3 =0, (4)

I 31l = UU3.11

where a; p, 'Y range over the integers 1 and 2.
Equations (4), in the absence of residual stress (that is, when U = 0), may be identified with

an approximative boundary condition derived by Mindlin[21] in connection with the vibration
of plates and utilized by Tiersten[22] in a study of wave propagation in a linearly elastic
half-space upon which a thin stratum of another linearly elastic material adheres without
slipping. If this stratum is of thickness h and has bulk Lame moduli AI and IL I and bulk density
p', then the Mindlin-Tiersten boundary condition coincides with (4) upon setting u = 0 and
making the associations

(Po, Ao, 1L0) ---. (p'h, IL I h, 2A'IL I h/(A' + IL '». (5)

In particular, Po and 1L0 are merely scaled versions of their bulk counterparts. The Mindlin­
Tiersten boundary condition was shown to be valid provided that any vibrations to which it is
applied have wavelengths markedly in excess of the plate/stratum thickness. Hence the
identifications (5) relate our theory to three-dimensional considerations and provide a guide to
its range of validity. This is particularly important since, as will be seen, the surface effects
become most pronounced at high frequencies.

Bulk waves
Solutions to eqns (3) which represent plane harmonic waves may be categorized [23] as

transverse (shear or S-waves) or longitudinal (pressure or P-waves). The classical results
(corresponding to the boundary condition T;3 = 0 on X3 = 0) are modified by the inclusion of
surface stress and inertia via the required satisfaction of eqns (4). For example, consider an SH
wave with angle of incidence a propagating in the 1-3 plane with amplitude parall~l to the
2-aXis. Then, as in the classical theory without surface stress, the reflected wave is also an sil
wave with angle of reflection equal to a (Fig. 2) and amplitude equal to the amplitude of the
incident wave (which we'take equal to 1). Thus '

UI =U3 =0,

U2 = cos {k (~ - t)} +cos {k (x: - t) -8},

where k is the frequency, b > 0 is the speed of shear waves in ~ (b 2 = ILlp), and

Xl =XI sin a - X3 cos a, XR =XI sin a +X3 cos a.

The only departure from the classical theory lies in the presence of the phase angle 8, which is
given by

8 =2tan-1
K

with

ko=e!.
Po

Fig. 2.
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Since the phase angle 8 depends upon frequency, a linear combination of SH waves of
different frequencies will, upon reflection, yield a distorted wave. It is interesting to note that of
the surface moduli only 1J.0 and Po are involved; in particular, no role is played by the residual
stress u.

We now turn back to the two cases of interest specified in Table I; for these the values of 7J

and kol2.". are listed below:

Table 2.

103 ~ iron film
iron half-space on glass

substrate

1'/ .036 1.5

kcl21T 5 X 1011 Hz 1.9 x 109 Hz

The number ko/2.". represents a characteristic frequency. The results for the iron half-space
suggest that surface effects become important at frequencies far too high to make wave
propagation a practical means of measuring surface parameters. However, the frequency of
1.9 x Id' Hz is exPerimentally attainable, while at the same time (since it corresponds to a
wavelength of 1.5 x 10-6 m) lying in a domain for which the surface model is valid.

The reflection of incident SV and P waves at a plane boundary has also been discussed in
detail[l5], the departure from classical behavior in these cases resulting in the appearance of
frequency-dependent phase angles and amplitudes for the reflected waves. It follows that a
superposition of any of the bulk waves considered will suffer distortion (but not dispersion)
upon reflection at a plane boundary which supports surface stress.

Surface waves [16]
The effect of the boundary .condition (4) upon the propagation of (Rayleigh) surface

waves[23] is to introduce dispersion. That is, the wave-speed is a function of its frequency, in
marked contrast to the classical situation in which waves of all frequencies propagate at a single
fixed speed. The precise behavior depends upon the relative values of the parameters u,
Ao+ 21J.0, and Pob2, where b is the (bulk) shear wave-speed. Using the data in Table 1 for a thin
iron film upon a glass substrate, it becomes apparent that experiments involving high-frequency
surface waves may prove practicable in determining the values of surface parameters:
frequencies within the range of possible generation, and for which the surface model is
appropriate, result in significant dispersion.

Love waves[23] also exist whenever 1J.0/Po < IJ./p and are dispersive, the wave-speed
decreasing with frequency from a maximum of (lJ./p)1/2 to an asymptotic minimum of (lJ.oIPo)1/2.
Thus such waves are possible for an iron free surface because

but impossible for the iron film upon glass substrate, since

lJ.oIPo = 1.1 x 101 > IJ./p =0.75 x 101

in this case. However, it must be remembered that Po in this latter case was taken to be a scaled
version of the bulk density, an assumption which is probably not justified. Indeed, there is
evidence that the film density is smaller than the bulk density times the thickness (see
Chopra[24]).

S. FURTHER CONSIDERATIONS

A complete thermodynamical theory of bodies whose boundaries are elastic material
surfaces has been developed by Murdoch [l0]. As pointed out by Shuttleworth [2] and
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Herring[4], the surface stress is not in general numerically equal to the (Helmholtz) free energy
per unit (surface) area. Indeed, for an elastic material surface, this is the case only if this free
energy is independent of deformations of the surface. An interesting feature of this theory is its
prediction of the dependence of the coefficient of thermal expansion of a given material upon
specimen size, this having its origin in surface thermo-elasticity.

As evidenced by the relaxation of surface stress in crystals cleaved in vacuo when
subsequently exposed to a gaseous environment[1], surface stress is essentially interfacial in
character. Moreover, when two solid bodies adhere without slipping then interfacial stress is to
be expected in the neighborhood of their common boundary. Indeed, in practical situations this
adhesion must be effected by a bonding process of some kind which must be expected to result
in an interfacial region whose material properties are sensibly different from those of either
body and yet which is small in the dimension separating the bodies. If the interfacial region is
modelled as an elastic material surface then the linearized mechanical theory is given by two
sets of equations for the bulk continua, each having the form of eqns (1), together with a set of
equations identical to (2) except for the inclusion in eqn (2)\ of a term representing the traction
upon the interface exerted by the second body. Interfacial wave propagation along a plane
boundary between two semi-infinite linearly elastic bodies has been discussed [17]. The results
resemble those for the surface waves described in Section 4 and demonstrate the possibility of
propagating Stoneley waves [23] for nearly all pairs of continua, in contrast to the classical
theory in which these bodies must have similar acoustical properties.

In the work discussed in this paper the surface or interfacial region is modelled as a
membrane[25]; that is, a material surface which offers no resistance to bending. This is a
reasonable assumption with which to begin a theoretical investigation of such regions from a
continuum viewpoint, but it would clearly be preferable to set the membrane model within a
more general framework when this is used to describe the behavior of thin films and surfaces of
peened bodies for which the thicknesses involved are considerably greater than those of
surface regions of single continua. That is, surfaces with a structure which allows them to
support couple-stresses (or bending moments) should be studied. Such an investigation should
delineate the range of validity of the membrane model in these cases and also throw light upon
the oft-asserted (constitutive) dependence of surface stress upon curvature (of course, the effect
of any surface or interfacial stress may involve curvature through the appearance in eqn (2)\ of
the surface divergence of the surface or interfacial stress tensor).
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APPENDIX
The purpose of this appendix is to introduce, briefly, our notation and terminology. For a more thorough discussion

the reader is referred to Ref. [6).
Let i denote a three-dimensional Euclidean point space, with 'Y the corresponding vector space. Further, let fI be a

smooth surface in i, and for each xE fI let T. denote the tangent plane to fI at x. The tangent space !T. is the
(two-dimensional) vector space of displacements of points in T. from x. Locally, fI may be characterized by the following
bijective correspondence between sufficiently small vectors" E !T. and points of fI: let "'.(") represent the point of fI
whose perpendicular projection upon T. is the point x+". Thus",. is defined on a neighborhood of the zero vector in !T.
and

",.(,,)=x+w+v,

where vE !T/, the (one-dimensional) subspace of V orthogonal to !T•. Further, the tangency condition implies that

v= o(w) as w->O.

Since ",.(0) = x, eqns (6) and (7) yield

1T.(W) = ",.(0)+ w+ 0(") as ,,->0,

so that

(V1I'.)(0) =I(x),

where

I(x)w = w for all wE !T•.

(6)

(7)

That is,I(x) is the inclusion mapping of !T. into 'Y. More generally, if u is a point-or vector-valued function (so that u0"'. is
defined in a neighborhood of 0 in !TJ, then u is said to be differentiable at x if uo",. is differentiable at O. In this case,
the surface gradient of u at x, (V9'u)(x), is defined by

'(V9'u)(x) = (V(uo",.»(O),

where (V(u 0",.»)(0) denotes the ordinary gradient of u°"'. evaluated at 0E !T•. It follows that (V9'u)(x) is a linear mapping
from !T. into 'Y.

Let fI be oriented by a choice of smooth unit normal field n (in applications fI is the boundary of a region Ii and n is
the outward unit normal to n. Then

P=l-n®n

is the projection onto the tangent space; that is, p(x) maps each vector vE 'Y into its component in the tangent space !T•.
We call

Du=PV9'u

the tangential derivative of u. Du(x), at any given x, maps tangent vectors into tangent vectors; thus its transpose Du(x)T
and trace tr(Du(x» are well-defined.

If u is a vector field on fI and I is a tensor field on fI with I(x): !T. -> 'Y, then the surface divergence div9' u of u is
defined by

div9' u = tr(Du),

while the surface divergence div9' I of I is that vector field which satisfiest

for every fixed vector k E 'Y.
When fI is a plane surface the foregoing becomes particularly simple since, for every xE fI, :'I. is the vector space !T of

all displacements in this plane, and ",.associates with every vectort E :'I the point x+ t. Thus, ifris a vector field defined on fI,e
is any unit vector in !T, and s is a real number, then

«V9'u)(x»se = (u °",.)(se) - (u 0",.)(0) + o(s)

= u(x + se) - u(x) + o(s).

Dividing by s and proceeding to the limit as s -> 0,

(V9'u)e = aulas.

That is, the action of V9'U upon any unit vector e delivers the rate of change of u in the direction defined bye. Hence, if eh

tIT: 'Y ->!T. is defined by I TV' W = v. Iw for all vE ~r and wE !T•.

SS Vol. 14. No. &----C
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l!2, C3 form an orthonormal basis for 'Y with Ct and C2 in fJ", then

(VyU)ijl =C,· (Vyu)c~ = UI,Jl (i = 1,2,3; fJ = I, 2),

where Uj,Jl is the rate of change of Uj (=u . c,) in the direction of e~. Upon noting that in this case,

P = 1-C3®e3 = CI®et +C2®e2,

(Du)a~ = ua,Jl and (E)a~ = 1/2(ua,Jl + u~,a),

it follows that eqn (2h reduces to (4b when f:I is plane. Further,

whence

and thus

(divy I), = (divy I)· CI = divy (ITej) = divy (Iiaca )

=Ir(D(Iiaca»= Iijl.~,

so explaining the derivation of Ihe first term in eqn (4)\.


